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Outline: 

• Background: Cryptography and Quantum Money
 

• What we did that didn’t work 

• What we did that we think might work 
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Traditional cryptography is called symmetric cryptography, where 

each pair of parties who want to communicate have a secret key, 

shared in advance. 

German World War II En

gima machine 

The possibiity of doing cryptography (called *public key* cryp

tography) done without secret keys was raised by Ralph Merkle 

in 1974. 
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Public Key Cryptography 

The first convincing truly example was Diffie and Hellman’s key 

exchange protocol. 

This lets two parties agree on a secret key without any pre

existing secret knowledge. 

This key can then be used for a symmetric cryptosystem, or as 

a one-time pad. 

The security of Diffie-Hellman depends on the difficulty of com

puting discrete logarithms. 
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Quantum Cryptography 

Two of the first two quantum cryptographic protocols were 

Wiesner’s protocol for quantum money, and the BB84 proto

col for key exchange.
 

Wiesner’s protocol for quantum money inspired BB84.
 

Both of these depend on the quantum no-cloning theorem.
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One problem with money is that you can make copies. 

Quantum states satisfy the no-cloning theorem, which says you 

cannot make a copy of an unknown quantum state. 

One might think this will immediately let us use quantum states 

for money. 

It’s actually quite a bit harder than it sounds, but we give a 

proposal for creating unforgeable quantum states. 
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No Cloning Theorem (1982) 

There is no quantum transformation taking |ψ) |0) to |ψ) |ψ) for 
an unknown state |ψ). 

Why not? This transformation isn’t unitary: 

|φ) |0) would go to |φ) |φ). 

But 

α = (φ |ψ) (0 |0) > (φ |ψ) (φ |ψ) = α2 

unless α = 0 or α = 1. 

Thus, angles are not preserved, and the cloning transformation 

is not unitary. 
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History of Quantum Money
 

In each bill, there is a sequence of quantum states in one of 

Stephen Wiesner’s idea 

for making quantum 

money, (circa 1970, 

published 1983). 

two complementary bases (so one of | 1) , |↔) | ր ցւ) , | տ )). By the 

quantum no-cloning theorem, anyone who does not know the 

polarizations of these states cannot copy them. 
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How to check the money? The mint knows the polarizations, 

and so can easily check it. 

We want the merchant to be able to verify that the bill is legit 

without sending it back to the mint. 

If the merchant knows the quantization axis and eigenvalue of 

each qubit, then the merchant can verify the money. 

However, he could also make new bills exactly like the one he 

got. 

We would like a verification procedure that does not allow the 

merchant to make fresh bills. 
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Cryptography Background and Motivation 

For many years, cryptography was done with ad hoc cryptosys

tems, many of which were eventually broken. 

Over the last few decades, cryptography has become much more 

mathematical, and theoretical computer scientists try to prove 

security of cryptosystems. 

There are two kinds of proofs of security in cryptography: secu

rity through information and security through complexity. 
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Definitions 

Informationally Secure Computationally Secure 

BB84 key exchange, Diffie-Hellman key exchange, 
one-time pad RSA cryptosystem 

No matter how powerful a 
The security of the crypto

computer an adversary has, 
system relies on the 

he will not be able to break 
difficulty of solving some 

the cryptosystem, because 
computationally hard prob-

he doesn’t have access to 
lem 

enough information. 

11
 



Disadvantages
 

Informationally Secure 

Many problems cannot be 

solved with informationally 

secure cryptosystems. For 

example, an information-

ally secure cryptosystem 

for encryption of messages 

requires a key as long as 

the message. (This is 

achieved by a one-time 

pad.) 

Computationally Secure 

It is hard to prove any

thing about the security 

of computationally secure 

cryptosystems. For ex

ample, the only reason for 

believing prime factoriza

tion is hard is that nobody 

has been able to solve it 

yet. 
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Quantum cryptography 

The BB84 protocol for quantum key distribution can be proved 

informationally secure, assuming the laws of quantum mechan

ics. This solves a task which is impossible to perform with an 

informationally secure protocol and classical computing. 

One genesis for this research was wondering whether there were 

any tasks that a quantum computer might perform with compu

tational security, but which were impossible for a digital computer 

to perform. 

We believe we have identified one. 
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Task: Unforgeable States 

We would like to make quantum states that 

a) can be verified. 

b) cannot be duplicated. 

14 



Task: Unforgeable States 

That is, we would like one of the players in the protocol (we 

will call her the mint) to be able to make a state |ψi), and a 

verification protocol Pi, so that 

a) |ψi) passes the test Pi. 

b) The test Pi does not destroy |ψi). 

c) a possible counterfeiter holding both the state |ψi) and know

ing the protocol Pi cannot produce a state of two quantum 

systems (possibly entangled) that both pass the test Pi. 
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One-of-a-Kind States 

In fact, in our protocol, we think that not even the mint can 

efficiently make another copy of the state |ψi) that pases the 

test Pi. 
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Uses for Unforgeable States: Quantum Money 

The mint makes quantum states, and gets pairs |ψi), Pi. 

The mint publishes a list of valid pairs i, Pi somewhere secure 

(so nobody can add an extra pair to the list). 

It then hands out some |ψi), together with i, to a customer who 

wants quantum money. 

Then anybody with |ψi) who knows i (and has a quantum com

puter) can check that it is a valid quantum money state; i.e., 

that i is on the list, and |ψi) passes the test Pi. 
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Uses for Unforgeable States: Quantum ID Cards
 

You could put a unforgeable quantum state into an ID card.
 

These ID cards could be stolen, but they could not be forged.
 

Of course, for both money and quantum ID cards, you need to
 

have long-lived quantum states. 
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You have to be careful.
 

For one of the potential protocols we looked at,
 

• A potential counterfeiter holding just |ψi) could not make a 

copy of it (because of the no cloning theorem). 

• Knowing just the verification protocol Pi, it appeared very 

difficult to find a state that passed it. 

• But both holding |ψi) and knowing Pi, a counterfeiter could 

produce two copies of |ψi). 
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Failed Protocol 

Creating the money: 

1. Choose a random product state 

|ψ) = |ψ1) ⊗ |ψ2) ⊗ |ψ3) ⊗ . . . ⊗ |ψn) .
 
where the |ψi) are uniform in Haar measure.
 

2. Choose Cn k-clauses (i.e., local Hamiltonians on k qubits) 
such that |ψ) has zero energy for each of the clauses. 

The quantum money state is |ψ) and the verification procedure 

is checking that it indeed has zero energy on all the clauses. 
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How to Break the Failed Protocol 

In breaking this protocol, we came up with a possible new algo

rithmic tool for quantum computing. 

Theorem (Quantum State Restoration) 

Given a Hamiltonian H, and a ground state |ψ) of H, one can 

do tomography on (i.e., estimate properties of) a small num

ber of qubits of |ψ) and measure local properties of it without 

destroying it. 

Question: are there any algorithmic uses for state restoration 

(besides breaking quantum money)? 
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How does our quantum money protocol work? 

We will 

1. Give a failed protocol based on graph isomorphism. This 

helps motivate our current protocol. 

2. Give our best current candidate for quantum money, created 

by using the replacing graphs with diagrams of knots. 

3. Discuss a general template for building quantum money pro

tocols. 
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Background on Graph Isomorphism 

Two graphs are isomorphic if you can relabel the vertices of one 

to obtain the other. 
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Quantum Computing on Graph Isomorphism 

Suppose we could take a graph G and create the state 

1 �
√ |π(G))

n! π∈Sn 

Then we could solve graph isomorphism. 

How? Given graphs G1 and G2, we prepare the state 

1 � 1 �
√ |π(G1)) ⊗ √ |π(G2))
n! n!π∈Sn π∈Sn 

If the graphs are isomorphic, these are equal. We test whether 

the state is a +1 eigenstate of the SWAP operator. 

24
 



Moral from Previous Slide 

Creating the equal superpositions of a graph 

1 �
√ |π(G))

n! π∈Sn 

seems to be hard. 

It turns out that for lattices, if you could create the equal super

position of points near vectors in a lattice 

1 �
√ |w)

N w:|w−v|≤ǫ,v∈L 

then you could find short vectors in the lattice. This is also a 

problem believed to be hard classically. 
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Attempt using Graph Isomorphism 

Now, consider the following algorithm. 

The mint starts with the equal superposition of all graphs 

1 � 
|G) . 

2n(n−1)/4 
G 

This is easy, because you can put each edge in a superposition 

of present and absent. 

The mint then measures some property of graphs which is in

variant under permutations of the vertices (e.g., the spectrum). 

Suppose the spectrum is S. Then we are in the state 

1 �
√ |G)
NS G:Spec(G)=S 
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Testing this state 

1 
The quantum money is: |$S) = √
 

N

G:Spec(G)=S
 

|G)
 .
 

To test it, we check 

1. that Spec(G) = S, 

2. that the state is invariant under the relabeling of two of the
 

vertices. 

Any state that passes these tests must be a superposition 

G
 
αG


� 

π
 
|π(G))
 =


G
 
αG |$G)
 

for some set of graphs G with Spec(G) = S. 
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Good News 

We have the state: 

1 �
|$S) = √ |G)

N 
G:Spec(G)=S 

One thing we could do is measure this state, to get a graph with 

Spec(G) = S. But then we can’t create 

1 �
|$G) = √ |πG)

n!
 π∈Sn 

unless we can solve graph isomorphism. 
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Bad News 

We can solve graph isomorphism for random graphs. 

If constructing the isomorphism is easy for a graph G, we can 

then create the state 

1 �
|$G) = √ |πG)

n!
 π∈Sn 

We can do this by creating the superposition over all permu

tations, applying the permutation, and then uncomputing the 

permutation. 
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What to do now? 

To use graph isomorphism for quantum money, we need to start 

with an equal superposition just over hard graphs. We don’t 

know how to do that. 

The new idea: instead of graph isomorphism, use a similar prob

lem which doesn’t have the drawback that it is easy for an av

erage case. 

Are there such problems? 

We looked through a lot of candidates which didn’t work before 

identifying what we think is a good one. 
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We propose using knots and knot invariants.
 

We have to vary the protocol somewhat to make them work.
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Knots 

Knot diagram are similar enough to labelings of graphs that we 

can use them in our money scheme. 

A knot diagram is a drawing of a knot in the plane. 

If you have a knot, then there are many different diagrams that 

represent the same knot. Testing whether two knots are given 

by the same diagram is believed to be a hard problem. 
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A Trefoil Knot
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Reidemester Moves 

If you have two knot diagrams that do give the same knot, you 

can move from one to the other using Reidemeister moves. 

Our idea is thus to replace graph isomorphism with knot dia

grams, and relabelings of vertices with Reidemeister moves. 
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Knot Invariants 

For our template, we need some function f mapping knot di

agrams into values that depend only on the knot and not the 

diagram (analogous to the spectrum of G for our failed attempt 

with graph isomorphism). These function are called knot invari

ants. 

We need to choose one that is computable in polynomial time. 

The Alexander polynomial is the best known of these, but there 

are others. The Alexander polynomial maps a knot into a polyno

mial with integer coefficients. For the trefoil knot, it is t2− t +1. 
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The Broad Outline of Our Proposal 

The mint starts with the superposition of all diagrams of knots. 

It then measures the Alexander polynomial of these knots (or 

another polynomial time computable knot invariant) to get 

α |K)
p(t) 
A(K)=p(t)

The verifier checks that the superposition given to him has the 

correct Alexander polynomial, and that this superposition is in

variant under Reidemeister moves. If the state passes these two 

tests, he accepts it as valid quantum money. 

36
 



But Infinity ... 

There are an infinite number of diagrams for the same knot.
 

Thus, we cannot use an equal superposition of all knot diagrams.
 

What we do is to take knot diagrams with between n1 and n2 

crossings, and weight them with some probabilities pk that de

pend only on the number of crossings k, so that most of the 

weight is at some k which is substantially less than n2. We 

then have to generalize our quantum money template to work 

for non-uniform distributions on objects. 

This can be done by using the weighting from reversible Markov 

chains. 
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Another Problem
 

Another difficulty we’ve introduced by replacing graphs with knot
 

diagrams is that it we need to create the uniform superposition
 

over all knot diagrams with a given number of crossings.
 

There don’t seem to be any simple algorithms for this.
 

We can fix this by using grid diagrams of knots.
 

Reidemeister moves get replaced by grid moves.
 

Instead of weighting by the number of crossings, we weight by
 

the size of the grid.
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Grid Diagrams 

For a grid diagram, you put 2n
 

points on an n × n grid, two in
 

each row and column. You con

nect the points in the same row 

and column, where vertical lines 

go over horizontal lines. 

Grid diagrams have the advantage that it is really easy to gen

erate the superposition of all grid diagrams, and also fairly easy 

to compute the Alexander polynomial of knots. 
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How could you break this protocol? The obvious way is to map
 

N N 

i=1
 

| i) →
 
i=1
 

|Gi)
 

where Gi is the ith grid diagram associated with some knot. 

For this, you need an efficient 1-1 reversible mapping from i to 

grid diagrams of a give size associated with a given knot. 

Mathematicians don’t even know of an efficient algorithm to tell 

whether two grid diagrams are associated with the same knot. 

(However, they can do this in practice using knot invariants.) 
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A general template 

Suppose we have a class of objects C; we have a small set of 

permutations on these objects: π1, π2, . . ., πk; and we have a 

function f so that f(πi(x)) = f(x) for x ∈ C. 

Now, we create the uniform superposition over all objects x ∈ C, 

and measure the invariant f . We then get the state 

1 �
√ |x)

N 

x:f(x)=k 

for some random value of the invariant k. 
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How to test the money in this template 

The verifier has a state purporting to be in the superposition 

1 �
√ |x) . 
Nk x:f(x)=k 

He first measures to make sure that f(x) = k. He then applies 

the permutations πi and sees whether the state changes. If it 

does not, then it passes the test. 

If the Markov chain obtained from the permutations πi is rapidly 

mixing, then the quantum money state is essentially the only one 

that passes the test. 
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Is this money safe? 

We have a proof sketch that, if there is a scheme that will coun

terfeit this money for general objects x, functions f and permu

tations πi satisfying the above conditions, then you can use it to 

solve graph isomorphism. 

We would like to show that, if the functions πi and f are given 

to you as oracles, then you cannot break such a money scheme 

(and not use the assumption that graph isomorphism is hard). 
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Open Problems 

Can we prove that our template (with a black-box set of objects 

replacing knots and black-box transformations replacing Reide

meister moves) is indeed secure, without assuming that graph 

isomorphism is hard? 

Can we use the same template to produce other protocols for 

quantum money? 

Are there other ways to produce quantum money? 

Scott Aaronson has a proposal to create quantum money from 

polynomials that are invariant on subspaces of Zn 
2. 
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